2008 - Age of Awakening / 2016 - Age of disclosures / 2021 - Age of Making Choices & Separation / Next Stage - Age of Reconnection and Transition! /
2024 - Two millenia-old Rational Collectivist societal cycle gives way to the Self-Empowered Individualism. /
2025 Golden Age begins

Thursday, August 30, 2012

Calorie restriction theory - disproved!

.
I knew there must have been something dodgy about Calorie Restriction theory!  It turns out they badly messed up the original  2009 Wisconsin study by overloading monkeys with sugar!  Not surprizingly - the less of that feed the monkeys ate the better they did!  Gross incompetence! Too bad for those who believed in that theory! Too late for Dr. Roy Walford and probably for many many others like him!


Rhesus macaque (wiki)

In contrast to that, the new just published study in "Nature" used a healthier diet over 25 years. The result was that the calorie restricted monkeys had more disease, by about 40% more (see the graph below)  than the control group!

Calorie restriction falters in the long run.
Genetics and healthy diets matter more for longevity.


Quotes [green comments inserted by me]:

The verdict, from a 25-year study [NIA study] in rhesus monkeys fed 30% less than control animals, represents another setback for the notion that a simple, diet-triggered switch can slow ageing. Instead, the findings, published this week in Nature[1], suggest that genetics and dietary composition matter more for longevity than a simple calorie count.
...
One reason for that difference could be that the WNPRC 
[an older study that supposedly  "proved" less calories = live longer] monkeys were fed an unhealthy diet, which made the calorie-restricted monkeys seem healthier by comparison simply because they ate less of it. The WNPRC monkeys’ diets contained 28.5% sucrose, compared with 3.9% sucrose at the NIA. Meanwhile, the NIA meals included fish oil and antioxidants, whereas the WNPRC meals did not. Rick Weindruch, a gerontologist at the WNPRC who led the study, admits: "Overall, our diet was probably not as healthy."
...
Observational studies have found that people of average weight tend to live longest[3]. Nir Barzilai, a gerontologist at Albert Einstein College of Medicine in New York, says that the centenarians he studies have led him to believe that genetics is more important than diet and lifestyle. "They’re a chubby bunch," he says.

Fig 3. Incidence and estimated proportions of three major age-related diseases.
 Red=Caloric Restriction Group [more disease], Blue=Control Group[less disease]


Another article:

Severe Diet Doesn’t Prolong Life, at Least in Monkeys, by Gina Kolata

Monday, August 13, 2012

I can't believe its not butter!

.
Major health scandal involving butter-flavored "food" and food industry. Lawyers and all that...

Search "diacetyl toxicity"



Notice links to fatal lung disease among factory workers handling butter flavor stuff, and also reports of neurological Alzheimer's like symptoms:

Article: "Butter Popcorn Chemical Linked To Alzheimer’s"

Not much news in the mainstream press. Why people ever buy that corporate crap at all? Why not just use real butter?

Saturday, August 11, 2012

Glucose and epileptic seizures

.

Interesting paper, requires more discussion (to be added later):


Fructose-1,6-Bisphosphate Has Anticonvulsant Activity in Models of Acute Seizures in Adult Rats


A variety of observations suggest that decreasing glycolysis and increasing levels of reduced glutathione, generated by metabolism of glucose through the pentose phosphate pathway, would have an anticonvulsant effect. 

Glucose is the primary source of energy for the CNS. Imaging of children with Lennox–Gastaut and infantile spasms has shown decreased glucose utilization between seizures and excessive glycolysis immediately before, and during, seizures (Chugani and Chugani, 1999). 

Evidence suggests that the changes in glucose metabolism and decreased glutathione levels observed in the brains of patients with epilepsy favor the generation of each seizure. First, hyperglycemia has been associated with seizure activity (Schwechter et al., 2003Lammouchi et al., 2004), whereas relative hypoglycemia has been shown to have an anticonvulsant effect (Greene et al., 2001). Second, the ketogenic diet (KD), which provides energy substrates for the brain that bypass glycolysis, has been shown to be an effective treatment for seizures (Freeman et al., 2007). Finally, animals with low levels of GSH have a low seizure threshold or spontaneous seizures (Wu et al., 2004).

[add discussion]

Saturday, June 2, 2012

Unknown keto+glucose oxygen-sparing metabolism?

.
I came across this in the following papers. May be a false lead, may be not.

"Cerebral metabolic adaptation and ketone metabolism after
brain injury", Mayumi L Prins, 2008


"In vivo 13C NMR studies of compartmentalized cerebral carbohydrate metabolism", Rolf Gruetter, 2002

"Brain Metabolism during Fasting", 0.E.OWEN et al., 1967

The papers review ketone and glucose metabolism in brain tissue. Among many of the issues discussed one finds that at a time of trauma, injury, hypoxia or during birth, brain tissue switches to some unspecified (unknown?) type of metabolism characterised by:
  1. increased processing of glucose through the pentose phosphate pathway (PPP),
  2. increased expression of ketone-metabolizing enzymes,
  3. relative reduction of oxygen use and CO2 release, in comparision with the overall rate of metabolism.
It is important to notice that PPP, as described in the literature is a pure glucose pathway oxydative-reductive (oxygen-sparing as compared with the normal glucose oxidative pathway) that is normally associated with NADPH production, used in reductive biosynthesis reactions within cells (e.g. fatty acid synthesis, RNA, cholesterol etc). Based on the known biochemistry, PPP is not supposed to have anything to do with ketone bodies or fatty acid metabolism in general.

Ketone metabolism on the other hand is not oxygen-sparing at all! A simple stoichometric analysis indicate similar oxygen usage per calorie compared with glucose oxidation (but with a significantly reduced carbon dioxide production!).

It is very hard to reconcile 1 and 2 with 3 unless one postulates that a new yet unnamed metabolic process is taking place that oxidizes ketone bodies and at the same time reduces (i.e. takes oxygen out of) glucose, with PPP being a side effect.  (It cannot be the traditional anaerobic glucose metabolism because of the reported deficit of lactate)

Quotes (first paper):
Although glycolytic activity is 38% greater in adults than fetal brain, the processing of glucose through the pentose phosphate pathway was 164% higher within the fetal brain compared with adults.
Hypoxic injury reduces oxygen availability and thus decreases oxidative glucose metabolism resulting in increased lactate production. High tolerance to hypoxia has been associated with increased plasma ketone levels...
In addition to neuroprotection from seizures, administration of ketones has been shown to provide protection after hypoxia/ischemia (Table 3).

My comment:

- hard to reconcile with the known metabolism of ketones which requires similar amount of oxygen as glucose (per calorie).

Quote (second paper):
The landmark study by Fox and Raichle in the late 1980s suggested that there is indeed a large increase in glucose metabolism that exceeds the changes in oxygen metabolism (Fox et al., 1988). The concept of uncoupled oxygen metabolism has been supported by reports of small increases in brain lactate during focal activation (Prichard et al., 1991), that initially were very controversial (Merboldt et al., 1992) and that are very difficult to perform. The relatively small magnitude of change in brain lactate is difficult to reconcile with the reported large uncoupling between oxygen and glucose consumption (Madsen et al., 1999).
My comment:

- a well known anaerobic (no oxygen) metabolism involves conversion of glucose to lactate, thus the lack of lactate, is the paradox indicating an unknown oxygen-sparing pathway.

Quote (third paper):

...as stated before, 2.81 mmoles/liter of CO2, should have been produced, with a theoretical respiratory quotient of 0.92 instead of the observed 1.90 mmoles/liter, resulting in a quotient of 0.62. To our knowledge, this deficit in CO2 production can only be explained by a carboxylation [see wiki] reaction with the venous effluent transporting the CO2 in a form not liberated by the acidification used in the standard manometric technique for determination of CO2 and HCO3.   According to most observations, the respiratory quotient of brain, which glucose serves as sole energy source, is close to unity (2,3,25). Brain, however, contains enzymes for all the major metabolic pathways (29-31), including fixation of CO2 (31,32); and oxidation of keto acids has been demonstrated in vitro (30,33,34). In addition, Kety et al. (35) noted decreased respiratory quotients in patients in diabetic ketoacidosis; but direct utilization of keto acids has not been found in this condition (3) or in fat-fed animals (36). Guettstein et al. also observed decreased respiratory quotients in patients with cerebral arteriosclerosis (37). Additional indirect evidence for a novel carboxylation reaction which would result in a low quotient has been Sacks' studies on glucose-14C oxidation in human brain whereby only 50% of glucose-carbon that is oxidized is recovered in effluent CO2 and HCO3,(38).

My comment:

Reduction of respiratory quotient to 0.62 meant that the process releases less CO2 than should have been base don the known and expected metabolic pathway. That indicates that the unknown metabolic process does not oxidize carbon to CO2 but leaves it in the residua, while probably (speculating) oxidizing only the hydrogen from ketone bodies with the oxygen atoms reduced from glucose. The result is less need for external oxygen input and less CO2 production. (Mental note: next post about Dr. Jan Kwasniewski!)

(Kudos for Dr. Dav0 for pointing out those papers, and his work on ketone metabolism, please keep it up!)
.

Sunday, May 27, 2012

Obesity not always tied to higher heart risk

.
And lack of obesity is not a protection. The study confirms that obesity and metabolic syndrome are most likely unrelated causually, although may be coincidentally correlated to some extent.

A new UK study is discussed here.

Quote:

"People with good metabolic health are not at risk of future heart disease -- even if they are obese," Hamer told Reuters Health.

On the flip side, the non-obese in poor metabolic shape face as much risk as the unhealthy obese, the researchers concluded.

The findings, published in the Journal of Clinical Endocrinology & Metabolism, are based on more than 22,000 middle-aged participants in national health studies conducted in England and Scotland.

According to the researchers, the results suggest that metabolic factors may be more important in predicting a person's risk of cardiovascular disease than excess body weight in itself.

Sunday, May 20, 2012

Eat fructose - go bananas...

.
... but add egg yolks, fish oil and organ meat and be sane again!  That seems to be the message of the  following Forbes' article and the study[1]:

Sugar Makes You Stupid, But Omega-3s Will Smarten You Back Up

A short digest:

Though we may not have fully come to terms with it, in theory we know that high-fructose corn syrup (HFCS) is an adversary of health. Lots of work has been done looking at the effect of fructose on weight, liver function, diabetes risk, and even the growth of cancer cells. But not much has looked at the role of fructose in brain function, until now. Researchers have just reported that among the list of bodily ills that fructose contributes to, it may also "make you dumb." Luckily, eating a diet rich in the healthy omega-3 fatty acids seems to counteract this phenomenon.
...

"The DHA-deprived animals were slower," said study author Fernando Gomez-Pinilla, "and their brains showed a decline in synaptic activity. Their brain cells had trouble signaling each other, disrupting the rats’ ability to think clearly and recall the route they’d learned six weeks earlier."
...
Gomez-Pinilla suggests that fructose might somehow block insulin’s effect on brain cells, and specifically how it signals neurons to store and release the sugar that is needed for the brain to function efficiently – and for us to think crisply and clearly.
Mrs. Walton would probably lose her contributor status with Forbes if she didn't add this comment:

The important thing to remember is that not all fructose is created equal. "We’re not talking about naturally occurring fructose in fruits, which also contain important antioxidants,"
I wonder, are we according to her, supposed to consume those "superhealthy" fruit but just somehow spit fructose out?      :)


Yes! We Have No Bananas, 1923

----------------------
Reference:

1. "Metabolic syndrome" in the brain: Deficiency in omega-3-fatty acid exacerbates dysfunctions in insulin receptor signaling and cognition, Rahul Agrawal and Fernando Gomez-Pinilla

Sunday, May 6, 2012

Eggs and cardiovascular mortality

.
It has been recently reported (see for example this) that:

A Harvard study of over 21,000 male physicians found that men who ate up to 6 eggs a week had no increase in their rate of death. But once they ate a seventh egg, their risk of death went up 23%. The men were studied over a 20-year period...
However, when one looked at the data in more details, a completely different picture emerges.  See for example this study.

It turns out that the group that ate ≥7 eggs per week (the highest bin) happened also to have more than twice (4-2 times)  the rate of diabetes (and were older) compared with the lower egg bins!  See Table 1.   Since diabetes t2 increases the risk of death by a factor of 5 (5 to 10) , this factor alone may explain an increase in the death risk among the 7 egg group!

The death risk was about the total mortality.  There was a statistically marginal increase in total mortality in the highest group (see Table 4) but it wasn't confirmed neither by the MI risk (Table 2  - in fact the risk goes down!)  nor by stroke (Table 3 - the risk stays the same).   Unfortunately the authors do not mention what were the 7 egg group dying from.

 This may have nothing to do with eggs but everything to do with diabetes!

Other studies not only fail to confirm that eggs correlate with cardio-vascular risk, but show in fact some  risk reduction, especially significant in case of stroke!  See for example this  or that study.

Monday, April 30, 2012

Low IGF-I activity and a high stroke risk in vegans

.

"IGF-I activity may be a key determinant of stroke risk--a cautionary lesson for vegans.", McCarty MF.

(Quoting here the first half of the abstract describing facts leaving out the second part containing some wishful thinking.)

Abstract

IGF-I acts on vascular endothelium to activate nitric oxide synthase, thereby promoting vascular health; there is reason to believe that this protection is especially crucial to the cerebral vasculature, helping to ward off thrombotic strokes. IGF-I may also promote the structural integrity of cerebral arteries, thereby offering protection from hemorrhagic stroke. These considerations may help to explain why tallness is associated with low stroke risk, whereas growth hormone deficiency increases stroke risk - and why age-adjusted stroke mortality has been exceptionally high in rural Asians eating quasi-vegan diets, but has been declining steadily in Asia as diets have become progressively higher in animal products. There is good reason to suspect that low-fat vegan diets tend to down-regulate systemic IGF-I activity; this effect would be expected to increase stroke risk in vegans. Furthermore, epidemiology suggests that low serum cholesterol, and possibly also a low dietary intake of saturated fat - both characteristic of those adopting low-fat vegan diets - may also increase stroke risk. ...


Wednesday, April 4, 2012

White Rice - no - Carbohydrates and Diabetes

.

Newly published paper: White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review



Quote:

Results Four articles were identified that included seven distinct prospective cohort analyses in Asian and Western populations for this study. A total of 13 284 incident cases of type 2 diabetes were ascertained among 352 384 participants with follow-up periods ranging from 4 to 22 years. Asian (Chinese and Japanese) populations had much higher white rice consumption levels than did Western populations (average intake levels were three to four servings/day versus one to two servings/week). The pooled relative risk was 1.55 (95% confidence interval 1.20 to 2.01) comparing the highest with the lowest category of white rice intake in Asian populations, whereas the corresponding relative risk was 1.12 (0.94 to 1.33) in Western populations (P for interaction=0.038). In the total population, the dose-response meta-analysis indicated that for each serving per day increment of white rice intake, the relative risk of type 2 diabetes was 1.11 (1.08 to 1.14) (P for linear trend < 0.001).

Sunday, March 18, 2012

Sunday, March 4, 2012

Power of Introverts (a book)

.
This is about the book:

"Quiet: The Power of Introverts in a World That Can't Stop Talking"
by Susan Cain


The following interview prompted me to look at it:


She said basically everything that I have been discussing in some of my posts.

This is her book:

Read the reviews under the book.
Also this is her recent NYT article:

5% less saturated fat and more carbs = 7% more coronary events!

Am J Clin Nutr 2009;89:1425—32
http://dl.dropbox.com/u/37202414/Jakobsen_2009.pdf

For a 5% lower energy intake from SFAs and a concomitant higher energy intake from carbohydrates, there was a modest significant direct association between carbohydrates and coronary events (hazard ratio: 1.07; 95% CI: 1.01, 1.14);
(I borrowed the link from this article )

Saturday, February 4, 2012

Longevity and cellular fatty acids utilization

.
I found this recent paper on Peter's blog (thanks!). It's hard to read and lacking some big picture discussion. The study analyzed genetics of 598 elderly people (Calabria, Italy), age range 64 to 105 years. They found a strong correlation of genetic expression of UCP2, UCP3 and UCP4 protein with longevity. What does UCP do and what does that really mean? The following quote attracted my attention:

Recently, Andrews proposed that UCP2 promotes longevity by shifting a cell towards fatty acid fuel utilization thus pointing to a major role of UCP2 in modulating metabolism [75]. This hypothesis is somewhat supported by Barbieri and colleagues [76] who analyzed the Ala55val polymorphism in a human cohort of elderly subjects from an Italian population.

Saturday, January 28, 2012

Coconut fat - ketone precursor curing neural diseases

.

Cocos nucifera  (wiki)

Watch this CBN video

This is based on the same story I posted here, see also these posts. It goes beyond that story. In the second half they claim that the healing effect of coconut fat is due to its role as the ketone bodies precursor, in the liver. Ketone bodies being the alternative (to glucose) fuel for the neurons. They list the following neurological disease that can or might be treated by boosting ketone production:
  • Alzheimers
  • ALS
  • Epilepsy
  • Dementia
  • Schizophrenia
  • Autism
Ketone bodies appear to have a strong anti-viral effect, helping protect or fight against viral diesases.  (Is that why I never got a flu since 1999?)
.

Friday, December 30, 2011

Histones deacetylation - new lead to degenerative diseases?

.
This recent article (and that paper) discuss the link between histones abnormality and schizophrenia.

Histones acetylation reduction or "deacetylation" cripples the ability of DNA to encode proteins thus can affects the entire cellullar metabolic and regenerative apparatus, producing effects probably resembling genetic disorders.  (What are histones? Read here)

The study reports particulary strong histone anomaly among schizophrenic patients of young age. This suggests a possible neurodegenerative process indicating a possible mechanism of the pathology of a young brain, that may lead to schizophrenia later in life.

Questions to think about:
  1. Could histone deacetylation anomaly lead to other common degenerative diseases?
  2. How does it affect mitochondria?
  3. Is there a connection between wheat histones (*) (or this) and human histones?
Few more facts about histones and neurological health:

- Since acetylation reduction is done by deacetylation enzymes called "deacetylase", inhibiting of deacetylase should restore the required level of histone acetylation. What are the common deacetylase inhibitors? Quote from the wiki article:

HDIs [Histone Deacetylase Inhibitors] fall into several groupings, in order of decreasing potency[6]:
  • hydroxamic acids (or hydroxamates), such as trichostatin A,
  • cyclic tetrapeptides (such as trapoxin B), and the depsipeptides,
  • benzamides,
  • electrophilic ketones, and 
  • the aliphatic acid compounds such as phenylbutyrate and valproic acid.

------------
More references:
Scientists discover a brain cell malfunction in schizophrenia
( Note: the link above as well as the original article twit was posted on this blog )

Note (*): interestingly, wheat uses histone disruptors to fight funghi.  New wheat variety introduced in the last century was specifically bread to resist funghi and molds.  Recent wheat variety  = heart diesease and cancer.  Earlier wheat, 19-th century and back = no prob!  Or is it too far out to conclude that?

Latest news (9-Feb-2012):


Scientists make discovery related to atherosclerosis


A research team funded by the National Science Council achieved a breakthrough in molecular--targeted therapy of atherosclerosis by experimenting on the condition’s formation mechanism from the perspective of cardiovascular biodynamics.
The council said discoveries by the team led by National Health Research Institutes [Taiwan] researcher Chiu Jeng-jiann (裘正健) had been recognized by the prominent academic journal Physiological Reviews in a cover story last year.

...the team focused on discovering the mechanism of how different levels of blood flow shear stress could affect molecules related to atherosclerosis formulation. The team was able to demonstrate that oscillated shear stress can increase the performance of several types of histone deacetylase (HDAC) in the endothelium, modulating some transcription factors and gene transcription. A noteworthy discovery is that the third type of HDAC has the important function of modulating oxidation, inflammation and hyperplasia and can be seen as an important targeted therapy for the prevention or treatment of atherosclerosis, Chiu said.

Reference:
"Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives", JENG-JIANN CHIU AND SHU CHIEN, Physiol Rev 91: 327–387, 2011

Update (28/08/2013)


Age-Related Forgetfulness Tied to Diminished Brain Protein (RbAp48)


and


RbAp48 belongs to the histone deacetylase complex that associates with the retinoblastoma protein.



.

Sunday, December 11, 2011

More starch more breast cancer recurrence

.
New analysis based on WHEL study titled "Starch Intake May Influence Risk for Breast Cancer Recurrence" presented at the 2011 CTRC-AACR San Antonio Breast Cancer Symposium, held Dec. 6-10, 2011.

Quotes:

“The results show that it’s not just overall carbohydrates, but particularly starch,” said Jennifer A. Emond, M.S., a public health doctoral student at the University of California, San Diego. “Women who increased their starch intake over one year were at a much likelier risk for recurring.”
Researchers conducted a subset analysis of 2,651 women who participated in the Women’s Healthy Eating and Living (WHEL) Dietary Intervention Trial, a plant-based intervention trial that enrolled about 3,088 survivors of breast cancer. WHEL researchers studied breast cancer recurrence and followed the participants for an average of seven years.
...
The change in starch intake was “independent of dietary changes that happened in the intervention arm,” Emond said. “It is independent of more global changes in diet quality.”

I have to comment on the following quote: . “The WHEL dietary trial, even though it focused on fruits and vegetables, fiber and fat, didn’t really have a specific carbohydrate goal,” Emond said.

Time and time again studies focus on some secondary issues such as which particular vegetable or fruit selection affects some outcome while at the same time ignoring a major issue of macronutrient ratios! Such analyses often come as afterthoughts and end up using incomplete or partial data, just because the study proponents didn't bother to measure a major variable.  Now they seem surprized finding an "elephant" in their  lab! The biggest kicker is that vegetables - the one "healthy" diet aspect that they WHEL study authors did focused to the detriment of other more real issues, turned out to be irrelevant as far as cancer was concerned! (see the study I discuss further down)

Even though the results suffer from the fact that the original study methodology wasn't properly focused on the issue that mattered, the results are consistent with other studies. For example this one:

"Carbohydrates and the Risk of Breast Cancer among Mexican Women"
Isabelle Romieu, Eduardo Lazcano-Ponce, Luisa Maria Sanchez-Zamorano, Walter Willett and Mauricio Hernandez-Avila


The study showed a very strong breast cancer promoting effect of carbohydrate consumption: for every additional 1% of carbohydrate calories consumed above 52%, the relative risk of breast cancer was incrementally increasing by about 10%!

Consistent also with the Italian data:

"Dietary glycemic index, glycemic load, and the risk of breast cancer in an Italian prospective cohort study", Sabina Sieri et al.

The study showed that a 56% higher glycaemic load (from 96g/d to 150g/d) produced 2.53 times higher relative risk of breast cancer among Italian women.

------

The following paper (also based on the same WHEL study as the headline study!) demonstrated that a low fat high vegetable diet was useless for fighting cancer!

"Influence of a Diet Very High in Vegetables, Fruit, and Fiber and Low in Fat on Prognosis Following Treatment for Breast Cancer." John P. Pierce, PhD; Loki Natarajan, PhD; Bette J. Caan, et al. The Women's Healthy Eating and Living (WHEL) Randomized Trial. JAMA. 2007;298:289-298.

Quote:
Among survivors of early stage breast cancer, adoption of a diet that was very high in vegetables, fruit, and fiber and low in fat did not reduce additional breast cancer events or mortality during a 7.3-year follow-up period.


-----------------------

Similar pattern with the ovarian cancer:

"Nutrient dietary patterns and the risk of breast and ovarian cancers." Edefonti V, et al., Int J Cancer. 2008 Feb 1;122(3):609-13.

... Cases were 2,569 breast cancers and 1,031 ovarian cancers hospitalized in 4 Italian areas between 1991 and 1999. Controls were 3,413 women from the same hospital network. Dietary habits were investigated through a validated food-frequency questionnaire. ... The animal products pattern and the unsaturated fats pattern were inversely associated with breast cancer (OR = 0.74, 95% CI: 0.61-0.91 and OR = 0.83, 95% CI: 0.68-1.00, respectively, for the highest consumption quartile), whereas the starch-rich pattern was directly associated with it (OR = 1.34, 95% CI: 1.10-1.65). The vitamins and fiber pattern was inversely associated with ovarian cancer (OR = 0.77, 95% CI: 0.61-0.98), whereas the starch-rich pattern was directly associated with it (OR = 1.85, 95% CI: 1.37-2.48). In conclusion, the starch-rich pattern is potentially an unfavorable indicator of risk for both breast and ovarian cancers, while the animal products and the vitamins and fiber patterns may be associated with a reduced risk of breast and ovarian cancers, respectively.

---------------------------
[side issue: carbs and HDL putting it here as a reminder for myself to write some more on it]
"Carbohydrate intake and HDL in a multiethnic population." Am J Clin Nutr. 2007 Jan;85(1):225-30.


"Previous research has identified ethnic differences in cholesterol and other blood fat levels that couldn't be explained by genes, obesity, lifestyle factors or diet, Merchant and his team note, but these analyses usually looked at dietary fat, not carbohydrate consumption"
-----------------------

Another Italian study, similar pattern:

"Intake of macronutrients and risk of breast cancer."
Franceschi S, Favero A, Decarli A, Negri E, La Vecchia C, Ferraroni M, Russo A, Salvini S, Amadori D, Conti E, Montella M, Giacosa A.
Lancet. 1996 May 18;347(9012):1351-6.


... FINDINGS: The risk of breast cancer decreased with increasing total fat intake (trend p ? 0.01) whereas the risk increased with increasing intake of available carbohydrates (trend p=0.002). The odds ratios for women in the highest compared with the lowest quintile of energy-adjusted intake were 0.81 for total fat and 1.30 for available carbohydrates. Starch was the chief contributor to the positive association with available carbohydrates. ... Conversely, the intakes of saturated fatty acids, protein, and fibre were not significantly associated with breast-cancer risk. ...

---------

Update (25-12-2011)

I am slapping this paper here quickly for the reference although it is not strictly on-topic (thanks Kiran)

Mean life span of CR sucrose-fed rats was significantly greater than all other groups [including starch fed CR]

Feed Corn starch Sugar
100% cal  
720
659
60% cal
726
890

The rats diet consisted of 14% protein, 10% fat, and 66% sucrose or cornstarch. The numbers are the average lifespans of rats in days (standard deviation is about +/-20days). 100% cal means an ad-libidum diet. 60% cal = calorie-restriction diet.
(this study needs a discussion)
.

Thursday, December 1, 2011

Arterial plaque = glucose + insulin, C14 traced study

Atheroma (from wiki)

A "blast from the past": two old forgotten papers that were never followed up, as far as I was able to find.  I wonder why not?

--------------

INSULIN STIMULATED LIPOGENESIS IN ARTERIAL TISSUE IN RELATION TO DIABETES AND ATHEROMA
R. W. Stout, Lancet p702,1968

Summary

Discussion (p1 of 2)
Discussion (p2 of 2)


INSULIN STIMULATION OF CHOLESTEROL SYNTHESIS BY ARTERIAL TISSUE

R.W. Stout, Lancet p467,1969


Summary
Discussion (p1 of 2)
Discussion (p2 of 2)

----------------------------
Dav0 found a more recent paper by Stout (thanks):


Insulin and Atheroma: 20-Yr Perspective, Robert W Stout, MD, DSc, FRCP

Quote:

Five population studies have shown that insulin responses to glucose are higher in populations at greater risk of cardiovascular disease. Many of the hyperinsulinemic populations also had upper-body obesity, hypertriglyceridemia, lower highdensity lipoprotein (HDL) levels, and hypertension. These prospective studies support an independent association between hyperinsulinemia and ischemic heart disease, although their results differ in detail. Hyperinsulinemia is associated with raised triglyceride and decreased HDL cholesterol levels.






.

Monday, November 7, 2011

Alzheimer's: The detrimental role of a high carbohydrate diet

Interesting paper just published:
"Nutrition and Alzheimer's disease: The detrimental role of a high carbohydrate diet", S.Seneff, G.Wainwright, L.Mascitelli, European Journal of Internal Medicine 22 (2011) 134–140.

Quote:
"A ketogenic diet has been found to be therapeutic in AD patients [72,73]. It involves an extremely high fat diet, with up to 88% of calories derived from fats. This benefit may be likely due in part to the bioavailability of a plentiful supply of fats to repair damaged membranes. However, this diet leads to the generation of a significant concentration of ketone bodies in the blood serum, which can be used as an alternative fuel to glucose ..."

A very good and brief summary by Ted Hutchison is here (TUESDAY, 11 OCTOBER 2011).
.

Tuesday, October 4, 2011

Is t2 diabetes result of mitochondrial destruction?

.

1. A hypothesis:

- Metabolic syndrome and diabetes t2 results from mitochondrial destruction caused by overfeeding with glucose (and fructose but only in the liver), taking place over many years. An individual mitochondrion has (hypothetical assumption!) a fixed maximal total energy yield out of the two main energy sources: glucose (or glucose+fructose in the liver) plus fatty acids.

There is a self-clamping regulatory mechanism preventing mitochondrial overfeeding by fatty acids, by means of Malonyl-CoA/CPT1 feedback (see Peter’s discussion), but there are no very effective self-regulation feedbacks for glucose, only a partial mechanism reducing the glucose transport into in the cells! This partial mechanism is mediated by insulin regulating the transport of glucose into a cell through the cellullar membrane. This regulatory mechanism is not always effective or fast because the insulin secretion is not local to the cell, rather it is produced in the pancreas whose rate of secretion is regulated by the autonomous nervous system and pancreating glucose concentration involving many factors other than some particular mitochondria overload. Furthermore, the insulin regulation (blocking) of glucose can be overriden by high glucose concentration.

2. Conclusions.

A straight conclusion would be that a high carbohydrate diet can indeed be healthy and avoid diabetes as long as it restricts calories to prevent mitichondrial overfeeding. What is the limit? In my guesstimate (based on published literature) - probably around 25kcal/kg for women and 30kcal/kg for men.

A second straight conclusion is that a high fat low carb diet automatically avoids mitochondrial deterioration and thus diabetes among other degenerative diseases, by its built-in biochemical overfeeding protection mechanism. (note: my daily caloric intake on a high animal fat diet, is and has been around 20-25kcal/kg since 1999).

A third conclusion concerns a situation of the cells with the insufficient number of or worn-out mitochondria. Having lower total mitochondrial energy throughput, such cells may be forced to over-rely upon and and over-utilize the Penthose Phosphate Pathway (PPP) (also called the Penthose Shunt) which takes place in the cytosol volume outside of the mitochondria. This has originally been proposed by Dr. Jan Kwasniewski, the author of Optimal Diet in the 1970-ties. I found his idea fascinating, largely because there was no easy or obvious way of proving it at the time, and last but not least - it flew right against the medical dogma! Interestingly the PPP is mainly a synthesis pathways resulting in lipids and lipoproteins manufactured inside the cells, in-situ. Such as the infamous "cholesterol" plaque perhaps? Out of glucose? Like suggested by R.W. Stout in his 1968 and 1969 Lancet papers?

--- Part 2 (9-Oct-2011) ---

3. Declining energy syndrome and carbo-loading trap.

More conclusions can be drawn out of this simple hypothesis. If t2 diabetes is the results of mitochondrial decline caused by overfeeding (carbs or by a combination of carbs and fats) then it should be accompanied by a steadily declining energy yield.

Suppose for the sake of discussion that a healthy individual consumes 30kcal/kg/day, leading active live. If he looses 10% of his mitochondria he would be able to process only 27kcal/kg/day. Less energy to work, more lethargic, getting tired sooner. What do we do when that happens? I was in that situation 15 years ago. Falling energy level at work, especially after 3pm. I snacked! I snacked on carbs! Why on carbs? Because I couldn't snack on fat! (even if I didn't believe that fat is harmful...) Fats don't work if you have mitochondrial deficiency because of the Malonyl-CoA/CPT1 feedback(*). A mitochondrion can only process a certain maximum amount of energy out of fat and that's it! If your total mitochndrial yield declined from 30 to 27 during the first 20 years of dietary abuse, then 27 is all what you can get out of fat! But you can still push your partially worn-out "engine" into overdrive by flooding it with extra glucose! It will sputter and spew out lots of smoke polluting your cells with free radicals, AGE's etc but it would allow you to bring your yield back to the previous level of 30. At least for a time being because the process of mitochondrial decline has accelerated due to the pushing them over the limit and the ensuing end product toxicity. So instead of 27kcak/kg/d, now the maximum available yield drops by another 10%, this time over 2 years. You can now safely draw 24kcal/kg/d out of fat or carbs or a combination of both. However if you want to stay awake at work you have got to load up on carb snack now by 20% not 10% over your maximum limits creating more problems, requiring a lot more insulin to overcame the natural barrier that your body cells have enacted against your plan. It also requires maintaining a high blood glucose level to speed up diffusion across cellular boundaries. Which particular cells of your body will be the first in line to see the high glucose and high insulin? Your arterial endothelium! Your liver!

This appears to be a run-away process where your tissues cells would keep enacting more and more barriers agaisnt excessive metabolism, your conscious brain will make you snack like crazy on carbs to maintain the same energy level, your pancreas will try keeping up with that pumping your insulin, your immune system will work overtime trying to clean up the mess after glucose and eventually it will also try saving your body tissue by attacking the source of the excessive insulin - pancreating beta cells, in some cases it will try even to sequester the excessive insulin floating in your bloodstream, and last but not least your poor mitochondria will keep dying! Eventually one of more of the players described above will give up. If you stop snacking and keep below your maximum metabolic yield, you will feel hungry and lethargic. Especially if you have to work 9-5. If you don's stop snacking your blood glucose would go up until you develop kidney failure. If you force you blood glucose below renal dumping threshold (about 160mg/dl) by injecting insulin you will develop heart failure or arteriosclerosis (or both). What to do? This will be the next subject.

4. The way out - what exactly happens (and when) if you start curing yourself of diabetes using a high fat low carb diet.


------
More references, links and thoughts are in this file.

Footnote:

*) I am speculating but there seems to be cases when the fat-clamp mechanism may also be defeated, leading to fatty acids overload(+). This condition is also harmful creating large amount of toxins that require a massive cleanup operation my the immune system (see Masterjohn's article, in my reference file above). I suspect that this is one reason behind the so-called "low-carb flu" syndrome sometimes reported by inexperienced diabetic low carb dieters. It is interesting that fat overload (if that does happen, however unlikely) may be as unpleasant as glucose overload!

Footnote to a footnote:

+) Indeed it does happen! Peter just posted an interesting discussion about this issue here. A must read! It appears that when the adipose tissue develops insulin resistance, it is then capable of releasing fat into triglyceride particles and into the bloodstream under the condition of falling but still higher than normal insulin level! Fatty acids are then forced into the cells and a smaller fraction are then forced into mitochondria. The free fatty acids left-over inside the cell (but outside of the mitochondria) become the main cause of the insulin resistance and the cause of major cellullar cleanup operation. I have a mental picture of my old sputtering "Komar" motorbike with its carburator overflooded with gasoline...


This makes a fascinating fork in the metabolic failure modes under overfeeding. On one hand, the overfeeding with glucose may be wearing off the mitochondria and also forcing the excess fuel into adipocytes. On the other hand releasing those excessive fats from the adipocytes into the bloodstream may be setting up the physiological insulin resistance and still damaging the cells even more through the high free fatty acids level in the cytosol. Interestingly this excessive fatty acids may as likely (if not more so) come from the internal source (adipose tissue) than from a diet! It also explains why many obese people experience a health breakdown only AFTER they undergo a weight loss, especially after a repeatable weight loss and weight gain cycling.


A weight loss diet is therefore ALWAYS a HIGH FAT diet even if a person eats nothing but lean veggies!

--- Part 3 (15-Oct-2011) ---

The reason I am considering this mitochondrial decline model seriously is because of my experience. Back in July 1999 when I started my low carb high animal fat diet (almost by accident) I did experience a noticeable lack of energy, light-headedness and dizziness for a couple of weeks. Also: low blood pressure and reduced blood clotting that showed up by excessive and random bruising on my hands.
The worst part of it (dizziness and weakness) last only for 2 weeks. I didn't have diabetes just metabolic syndrome and hypoglycemic episodes. In my case, I was able to combat those initial low carb startup difficulties by carrying with me some high fat snacks such as Swiss cheese, Polish saussage and nuts.

The main problem is: when you stop consuming excessive carbohydrates then your damaged mitochondria might not be able to deliver enough energy out of fat and carbs to sustain your previous energy expenditure. You do feel the loss of energy immediately, and more hunger, therefore:    You must slow down!

 The only way for your mitochondria to recover or for your tissue to stop deteriorating and then regenerate(**) is to maintain the lower caloric intake compatible with your maximal mitochondrial yield. It will recover! This is the good news. The bad news is that it will take a few years!

Footnote:
**) I am not sure if mitochondria can individually regenerate by themselves or if the only way is for the body to regrow the new cells from stem-cells.

Yes to both, see this comment by Dr. Jack Kruse, on Peter's blog.
The low carb high fat therapy can be divided into 3 stages.

a) Switch-over

This is when the initial difficulty will show up. For diabetics and elderly this could be severe enough to warrant some medical supervision. Your body, digestive system and metabolic apparatus is switching over from carbohydrates to animal fats as the main energy source. There are hundreds of grams of enzymes circulating in your system that are no longer needed and have to be disposed off. Enzymes are protein. you will excrete their end products in urine, during this stage. Ketone bodies will show up in urine since your liver will be producing them more than your body tissue are able (yet) to utilize as fuel. Fortunately ketones in urine are in this case inconsequential but one has to be aware of it because of the rampant scare-mongering propagated by some uninformed people. I have seen many cases of people being scared by ketones and abandoned a low carb high fat diet, to their detriment. This stage last typically from 2 week to 2 months.

b) Rapid at first, then gradual improvement, disappearance of most chronic disease symptomes.

At this stage, most diabetic patients will experience disappearance of all or of most of the symptoms. Also, other chronic disease will show a lesser or stronger reversal, for example: auto-immune diseases, chronic intestinal diseases, arteriosclerosis, cardiac diseases, vascular diseases, neurological etc. However, the energy level may still be lower than on the standard high carb high caloric diet. Good news is that this yield will no longer be deteriorating. It will begin to slowly improve.

Many changes will take place at this stage, for example:
  • Eating and snacking habits will be completely modified.
  •  
  • Hunger will disappear, one will have to eat only once or twice a day. There will be no "toxic" hunger!(***) Total caloric intake will automatically and painlessly come down by about 30%, compared with the previous high carb nutrition. Please notice how close this ties with the Caloric Restriction programme! The low carb high fat diet is the Caloric Restriction program without hunger! For diabetic patients, all symptoms should disappear during this period. Most patients (except dm t1) will no longer need diabetic drugs or insulin. However - if they go back to a high carb diet, their diabetes will return.
  •  
  • Breathing rate will go down. An interesting side effect will be an ability to free-dive for a longer periods of time due to lower carbon dioxide release per calorie due to fat oxidation chemistry and due to an overall lower energy expenditure!.
  •  
  • Ability to better withstand cold temperature and cold weather.
  •  
  • Greater resistant to stress and alleviation of some neurological disorders, mood disorders, bad temper etc. This is a big and important effect! The low carb high fat metabolism is accompanied by a significantly different endocrine reaction against stress stimuli. A stress will no longer trigger a "panic paralyzis" reaction or initiate a panic attack, but will instead stimulate a generally pleasant and always useful rush of energy! The effects of stress hormones upon the neural tissues will be much less harmful in the presence of ketone bodies as in ketogenic diet, than in their absence as is more typical under the high carb diets in metabolic syndrome.  Ketone bodies are not produced when insulin and glucose levels are too high! More on the effect of stress hormones, ketone bodies and glucose upon the neural tissue is discussed here.
  •  
  • Greater resistant against infections, viral and bacterial. No more seasonal flu!
  •  
  • Complete prevention of tooth decay and dental plaque. I have seen cases of molar teeth broken in half self-healed by sealing off of the cleavage.
  •  
  • Improved cholesterol level and profile.  One notable exception: patients with fatty liver disease, the level of LDL may climb to a very high value, I have seen as high as 700md/dl sustained over a couple of years. No adverse health impact, other than scaring a "beejesus" out of some doctors... . Note that after the fatty liver recovers, LDL comes down.
  •  
  • Lower capacity to tolerate a once off high carbohydrate meal (or high intake of alcohol).  At this stage, people with metabolic syndrome and diabetics must still be careful to actually measure their daily intake of carbs and ensure it is within the strictly limited band. Typically about 50g per day.   Failure to observe this limit results in unpleasant symptoms and is hazardous to one's health.

Footnote:
***) The term "toxic hunger" as coined by Fuhrman, is in my opinion probably related to a falling level of glucose and insulin from a high value below the level sufficient to sustain glucose metabolism (in metabolic syndrome) but still too high to allow burning of one's body fat. This leads to a condition where some or all body tissues are temporarily starved of energy.   In a non-diabetic, insulin and glucose levels do not go too high thus insulin can quickly go down in between the meals prompting the release of the stored body fat.

High insulin = low leptin = burning glucose not fat.
Low insulin = high leptin = burning fat not glucose.

A very weak feeling of a slight hunger under ketogenic body fat "burning" can be easily overcome or forgotten, and is totally different from a "panicky" acute and almost painful hunger pangs experienced by diabetics and people with metabolic syndrome.  


c) Long term recovery

After several years on the low carb high fat diet, one's energy level will gradually come back to the previous level (like in one's 30-ties). This is probably due to tissue regeneration from stem cells. In my experience this will take a minumum of 7 years. An ability to tolerate a once-off higher intake of carbohydrates (typ. up to 150g) will come back at this stage. People who had diabetes may probably (I am hypothesizing) be able to come back to some kind of medium carb medium caloric diet if they wanted to, without getting diabetes because they will no longer be insulin resistant.

------
A must-read:
"Metabolic flexibility and the identical twins"


.

Saturday, September 24, 2011

How Our Genes Respond to the Foods We Eat

.
Interesting and important research coming from Berit Johansen,Ingerid Arbo, Hans-Richard Brattbakk et al., from the Norwegian University of Science and Technology (note *):

Feed Your Genes: How Our Genes Respond to the Foods We Eat

Butter
Quotes:

If you could ask your genes to say what kinds of foods are best for your health, they would have a simple answer: one-third protein, one-third fat and one-third carbohydrates. That's what recent genetic research from the Norwegian University of Science and Technology (NTNU) shows is the best recipe to limit your risk of most lifestyle-related diseases.

NTNU researchers Ingerid Arbo and Hans-Richard Brattbakk have fed slightly overweight people different diets, and studied the effect of this on gene expression.

"We have found that a diet with 65% carbohydrates, which often is what the average Norwegian eats in some meals, causes a number of classes of genes to work overtime," ... "This affects not only the genes that cause inflammation in the body, which was what we originally wanted to study, but also genes associated with development of cardiovascular disease, some cancers, dementia, and type 2 diabetes -- all the major lifestyle-related diseases," she says.

"Both low-carb and high-carb diets are wrong," says Johansen. "But a low-carb diet is closer to the right diet. A healthy diet shouldn't be made up of more than one-third carbohydrates (up to 40 per cent of calories) in each meal, otherwise we stimulate our genes to initiate the activity that creates inflammation in the body." This is not the kind of inflammation that you would experience as pain or an illness, but instead it is as if you are battling a chronic light flu-like condition. Your skin is slightly redder, your body stores more water, you feel warmer, and you're not on top mentally. Scientists call this metabolic inflammation.

It was not only inflammatory genes that were putting in overtime, as it would turn out. Some clusters of genes that stood out as overactive are linked to the most common lifestyle diseases.
"Genes that are involved in type 2 diabetes, cardiovascular disease, Alzheimer's disease and some forms of cancer respond to diet, and are up-regulated, or activated, by a carbohydrate-rich diet," says Johansen.

"We're not saying that you can prevent or delay the onset of Alzheimer's if you eat right, but it seems sensible to reduce the carbohydrates in our diets," she suggests.

The immune system operates as if it is the body's surveillance authority and police. When we consume too many carbohydrates and the body is triggered to react, the immune system mobilizes its strength, as if the body were being invaded by bacteria or viruses.
"Genes respond immediately to what they have to work with. It is likely that insulin controls this arms race," Johansen says. "But it's not as simple as the regulation of blood sugar, as many believe. The key lies in insulin's secondary role in a number of other mechanisms. A healthy diet is about eating specific kinds of foods so that that we minimize the body's need to secrete insulin. The secretion of insulin is a defense mechanism in response to too much glucose in the blood, and whether that glucose comes from sugar or from non-sweet carbohydrates such as starches (potatoes, white bread, rice, etc.), doesn't really matter."

Johansen has some encouraging words, however, for those of us who have been eating a high carbohydrate diet. "It took just six days to change the gene expression of each of the volunteers," she says, "so it's easy to get started. But if you want to reduce your likelihood of lifestyle disease, this new diet will have to be a permanent change."

The best is to cut down on potatoes, rice and pasta, and to allow ourselves some of the good stuff that has long been in the doghouse in the refrigerator.
"Instead of light products, we should eat real mayonnaise and sour cream," Johansen says, "and have real cream in your sauce, and eat oily fish.

Fountain-of-youth genes

Johansen's research also shows that some genes are not up-regulated, but rather the opposite -- they calm down rather than speed up.

"It was interesting to see the reduction in genetic activity, but we were really happy to see which genes were involved. One set of genes is linked to cardiovascular disease. They were down-regulated in response to a balanced diet, as opposed to a carbohydrate-rich diet," she says. Another gene that was significantly differently expressed by the diets that were tested was one that is commonly called "the youth gene" in the international research literature.
"We haven't actually stumbled on the fountain of youth here," Johansen laughs, "but we should take these results seriously. The important thing for us is, little by little, we are uncovering the mechanisms of disease progression for many of our major lifestyle-related disorders."


---------------
(I wish to express my thanks to chili_in_a_can from McDougall's vegan forum for publishing the article link)

---------------

Contact: Berit Johansen, Department of Biology, NTNU
TEL. +47 73 59 86 91 E-MAIL: berit.johansen at bio dot ntnu dot no

More articles on this topic:

What should we eat to stay healthy?

Best diet: One-third protein, carbs, fat

------------------------

*) Note the effect this article may have had in Norway, recently (December 2011): link


.